Radial Basis Function Neural Network Scala Implementation

 

In this post, I am going to demonstrate a two-step Scala implementation of Radial Basis Function Neural Network (RBFNetwork): (unsupervised) k-means clustering first, and (supervised) gradient descent second. This two-step implementation is fast and efficient compared to Multilayer Perceptron while providing good predictive performance. This is because unsupervised learning at the first step provides information about data distribution so that the second step can have an intuition about the data and fine-tune the model.

For us, most of the Machine Learning models that we use today are just black box approaches that we take from some library. It is good to have this ability for faster development; however, it would be nicer to know internal dynamics of their implementations. Therefore, I am hoping that this post will be simple enough to provide you that information.

Read more